

Oberflächennahe Geothermie "Ein innovativer Beitrag zur Energiespeicherung?"

Dr. R. Kahnt

"Energie und Rohstoffe 2009" 9.-12. September Goslar

Der Verein GKZ e.V.

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

- Gegründet im März 2002 unter Beteiligung des Freistaates Sachsen
- Ziel: Schaffung eines innovativen Netzwerkes von Wirtschaft, Wissenschaft und Fachbehörden
- Bündelung der Kompetenzen
- 140 Mitglieder und Kooperationspartner, 14
 Arbeitsgruppen, überregionale Präsenz

Der Verein GKZ e.V.

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

Direktverdampfersonden

- Organisation und Förderung von Bildungs- und Lobbyarbeit
- Initiierung und Koordination komplexer F+ E Vorhaben
- Beratungs- und
 Dienstleistungen zur Stärkung
 der Wettbewerbsfähigkeit von
 Mitgliedern
- Präsentation des
 Universitätsstandortes und
 der Geomontanregion
 Freiberg als Wirtschafts- und
 Wissenschaftszentrum

Der Verein GKZ e.V.

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Gegenwärtig haben sich Arbeitsgruppen in folgenden Fachgruppen formiert:

- 1. Geobiotechnologie
- 2. Geothermie
- 3. Geoinformatik
- 4. Rohstoffwirtschaft
- 5. Boden
- 6. Flächenrevitalisierung
- 7. Bauen im Altbergbau
- 8. Baurohstoffe
- 9. Wasserbau / Hydrogeologie
- 10. Aus- und Weiterbildung
- 11. Sanierungsbergbau
- 12. Erdől-/ Erdgas Speichertechnik
- 13. Recycling und Aufbereitung
- 14. Geotechnische Spezialleistungen

G.E.O.S.

GEOS. Freiberg Ingenieurgesellschaft mbH

Gründung

1990

Stammkapital

EUR 511.810

Mitarbeiter

100

Hauptniederlassung in Freiberg/Sachsen

Niederlassungen und Büros in Berlin, Cottbus, Weißwasser, Leipzig, Magdeburg, Halle, Rostock

Tochtergesellschaft *proGEO* in Wroclaw/Polen, Joint Ventures in Kazakhstan, Bulgarien, Südafrika

Zertifiziert nach DIN EN ISO 9001:2000-12

Adresse: Postfach 1162, 09581 Freiberg, Tel. 03731-369 0, Fax 03731-369 200, Email: info@geosfreiberg.de, Web: www.geosfreiberg.de

Partnerschaft: Goldsim Technology Group

GEOS. Freiberg Ingenieurgesellschaft mbH

Internationale Erfahrungen:

Albanien, Aserbaidshan, Bulgarien, Deutschland, Frankreich, Indonesien, Iran, Kasachstan, Kosovo, Kuwait, Laos, Libanon, Libyen, Mongolei, Namibia, Neuseeland, Nigeria, Oman, Pakistan, Polen, Rumänien, Russland, Serbien, Südafrika, Tschechien, Tadschikistan, Turkmenistan, Vereinigte Arabische Emirate, Vietnam

Bergbauunternehmen EFS GEos (Fluorit, Baryt)

Kernkompetenz G.E.O.S.

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Komplexe Lösungen und Dienstleistungen für:

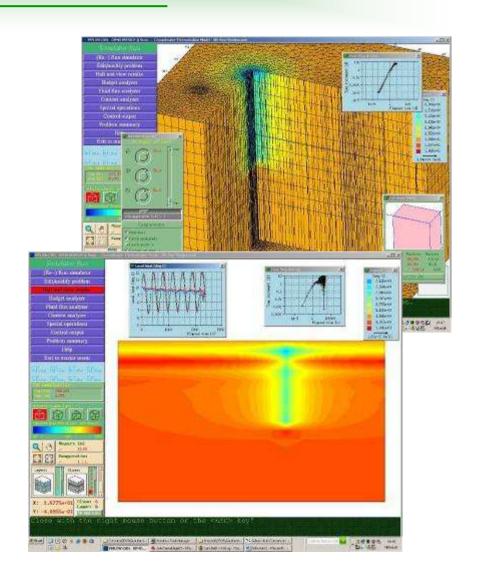
- Abfallwirtschaft
- Biotechnologie / Verfahrensentwicklung
- Exploration / Bergbauplanung und –sanierung für Metall-, Kohle- und Erdöl/Erdgaslagerstätten
- Geotechnik / Baugrund
- Modellierung / Risikoanalyse
- Regenerative Energie (Geothermie, Offshore Windenergie, Biogas)
- Standortentwicklung / Unternehmensberatung
- Wasserversorgung / Abwasserbehandlung
- Wasserbau / Hochwasserschutz

Arbeitsfelder G.E.O.S.: Flache und Tiefe Geothermie

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz


Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

- Standortauswahl und Bewertung
- Erlaubnisanträge
- Machbarkeitsstudien
- Wirtschaftlichkeitsbetrachtungen
- Geologische Erkundung Planung
- Monitoring und Optimierung
- Geohydraulische und geothermische Simulation, Prozessmodellierung
- Bauüberwachung

Energiebilanzbetrachtungen Erdwärmekollektoren (Heizen)

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Erdwärmekollektor

Ergebnis Grobabschätzung:

Die Energiebilanz wird durch den Eintrag von oben dynamisch ausgeglichen, Bilanzbeiträge von unten sind nach wenigen Jahren vernachlässigbar

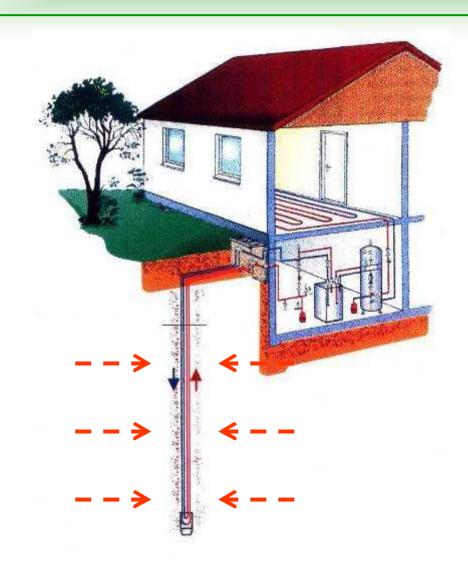
→ Ausgleich der Energiebilanz durch Sonneneinstrahlung

Energiebilanzbetrachtungen Erdwärmesonden (Heizen)

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz


Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Erdwärmesonden

<u>Ergebnis</u> <u>Grobabschätzung:</u>

Nachlieferung der Energie aus dem umgebenden Erdreich.

Es werden statische Energievorräte abgebaut, kein Bilanzausgleich über Betriebszeit.

→ Abbau statischer Energievorräte

Energiebilanzbetrachtungen Erdwärmesonden (Heizen)

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm. Grubenwassernutzung

Direktverdampfersonden

Tiefe Sonden

Beschränkung auf Wärmeleitung und eine Sonde (Radialsymetrie), Gebirge mit effektiven Parametern, keine Wasserströmung

$$\rho^{eff}c^{eff}\frac{\partial T(r,t)}{\partial t} = -\lambda^{eff}\frac{\partial^2}{\partial r^2}T(r,t) + \rho^{eff}\overline{Q_T}$$

Analytische Lösung nach Tschekaljuk (mit Potentialsprung)

$$P_{th} = \frac{2\pi\lambda^{eff} \Delta T}{\ln\left(1 + \sqrt{\frac{\pi at}{r^2}}\right)} \quad \text{mit} : \quad a = \frac{\lambda^{eff}}{\rho^{eff} c^{eff}}$$

bzw.:

bzw.:
$$\Delta T = \frac{P_{th} \ln \left(1 + \sqrt{\frac{\pi at}{r^2}}\right)}{2 \pi \lambda^{eff}}$$

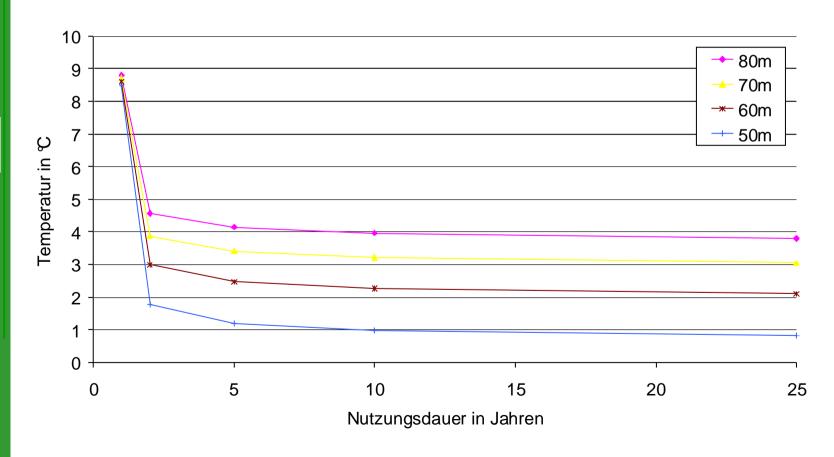
Energiebilanzbetrachtungen Erdwärmesonden (Heizen)

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Sondentemperatur (Januar) als Funktion der Zeit für unterschiedliche Sondenlängen

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Zwischenergebnis:

- Bei Kollektoren findet dynamischer Bilanzausgleich statt
- Mit Sonden werden zum Großteil statische Wärmevorräte abgebaut (bei ausschließlicher Nutzung zu Heizzwecken!!!)
- Ist für wenige Sonden unerheblich, für größere Sondenfelder aber problematisch durch gegenseitige Beeinflussung
- → exakte Planung notwendig (Test + Simulation)
- → Aber: Flächenbedarf steigt überproportional

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Simulationsbeispiel:

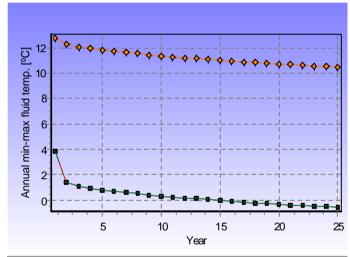
- Wärmebedarf: 143 MWh / a mit typ. zeitl.
 Verteilung
- Keine Kühlung
- Sondenfeld mit 16 Sonden a 100 m
- Variation Sondenabstand

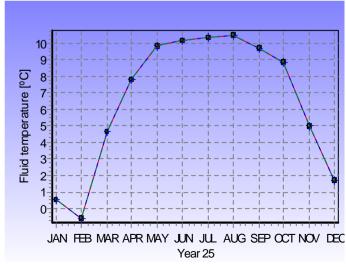
Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

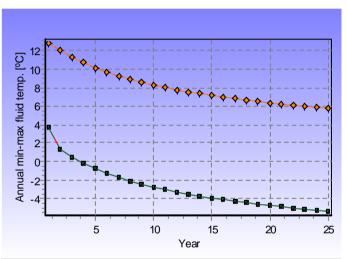
Energiebilanz

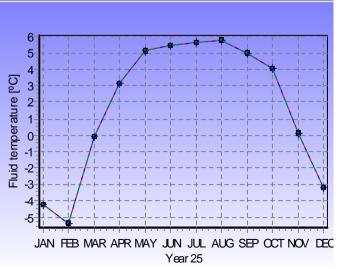
Wirtschaftlichkeit


Diskussion


Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>


Tiefe Sonden


Sondenabstand 30 m:

Sondenabstand 10 m:

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

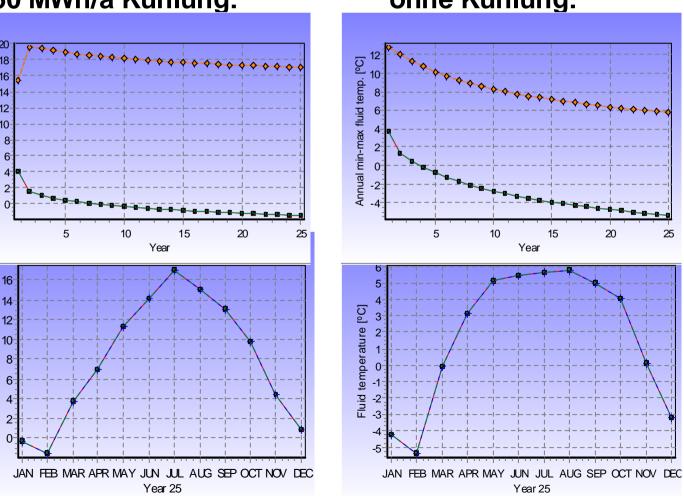
Wirtschaftlichkeit

Diskussion

Geotherm. Grubenwassernutzung

Direktverdampfersonden

Tiefe Sonden


10 m Sondenabstand

50 MWh/a Kühlung:

Annual min-max fluid temp. [°C]

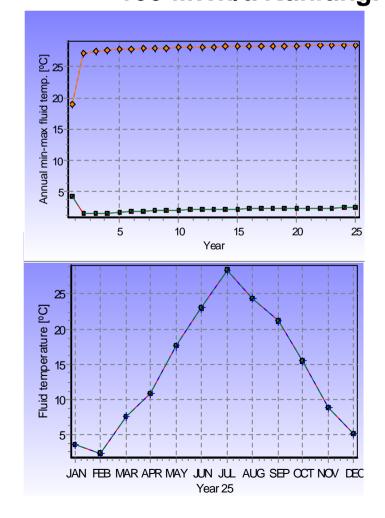
Fluid temperature [°C]

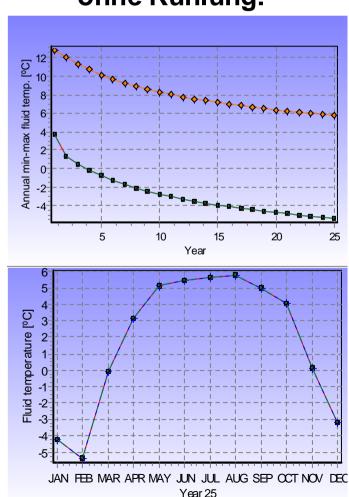
Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion


Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

10 m Sondenabstand 100 MWh/a Kühlung: ohne Kühlung:

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Kühlung = Wärmeeintrag in den Untergrund

→ Kombination Heizung / Kühlung = Energiespeicherung

Wenn kein Kühlbedarf → Suche nach alternativen Energiequellen für Wärmeeintrag:

- Sonnenenergie
- Prozessabwärme
- ...

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Vorteile von zus. Wärmeeintrag in das Erdreich:

- Reduzierung Sondenlänge (=Investkosten) bzw.
- Erhöhung Sondentemperatur
 - → Verbesserung COP

Grenzen:

- Grundwasser ist kontraproduktiv
- Energieinhalt ist begrenzt, da Temperaturdifferenz begrenzt ist
- Sehr detaillierte Planung notwendig, da Kompromiss gefunden werden muss zwischen:
 - A) wenig gegenseitiger Beeinflussung (große Abstände und möglichst langgezogene Anordnung) oder
 - B) gute Speichergeometrie (kreisförmige Anordnung)

Ökonomische Bewertung

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

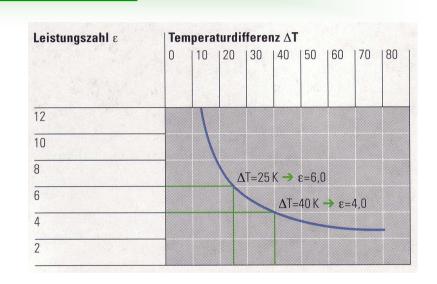
<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Wenige notwendige Schlüsselparameter:

• Spez. Preise bspw.:

Gas: 7 ct/kWh


• Strom: 15 ct/kWh

• Strombedarf für Heizung: 4000 kWh/a → Stromkosten 600 €/a

• Aber: Zeitabhängigkeiten !!!

Diskussionsansätze

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

- Welche Technologien zur oberflächennahen geothermischen Wärmespeicherung gibt es u. welche Vor- und Nachteile besitzen sie?
- Was sind die Vorraussetzungen für eine wirtschaftliche Anwendung dieser Technologie?
- Welches Marktpotenzial besitzt diese Technologie?

Systematisierung

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Nach Speichertyp:

- Sondenfelder
- Konstruktive Lösungen (Einkapselungen etc.):
 - Kiesbecken
 - Wasserbehälter
 -

Nach Energiequellen:

- rein geothermische Systeme
- Nutzung Sonnenergie
- Nutzung Prozess- oder Abwärme

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

Direktverdampfersonden

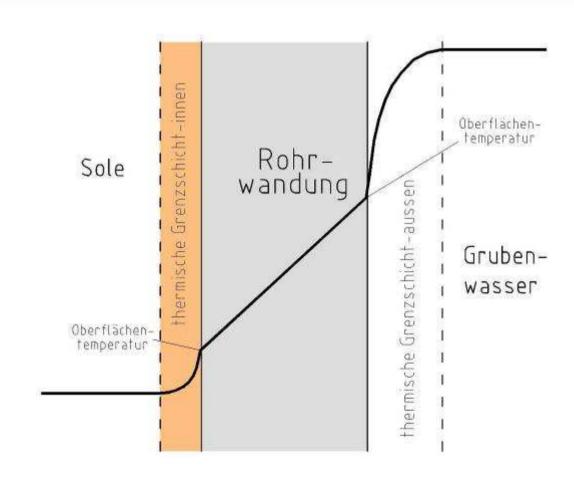
Tiefe Sonden

Teilprozesse:

- Wärmetransport im Gestein
- Wärmeübergang vom Gestein auf die Bentonitfüllung
- Wärmeübergang von der Bentonitfüllung auf die äußere Sondenwandung
- Wärmeübergang durch die Sondenwandung
- Wärmeübergang von der inneren Sondenwandung auf die Sole

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.


Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Wärmeübergangskoeffizienten:

$$\alpha = \frac{Nu_{m,T} \cdot \lambda}{d_i} = \frac{73 \cdot 598, 5 \cdot 10^{-3} W \ m^{-1} K^{-1}}{0,0262 m} = 1667 \ W \ m^{-2} K^{-1}$$

Material	λ in W m ⁻¹ K ⁻¹	Wandstärke (mm)	α in W m ⁻² K ⁻¹
HDPE	0,38	2,9	131
Edelstahl (1.4301)	15	1,5	10.000

$$\alpha_{gesamt} = \frac{1}{\frac{1}{\alpha_{innen}} + \frac{1}{\alpha_{rohr}} + \frac{1}{\alpha_{aussen}}}$$

$$\alpha_{gesamt} = 121 \text{ W/(m}^2\text{K)}$$

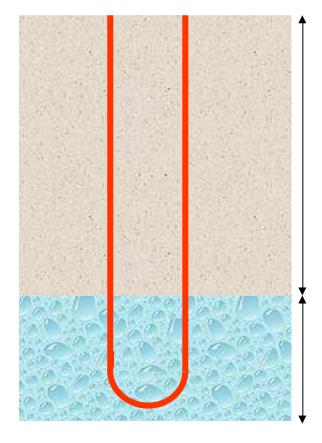
- Grenzschicht spielt untergeordnete Rolle für HDPE
- für Edelstahl ist sie limitierend

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Sonderanwendung: U-Rohrsonde in einem gefluteten Grubenbau

Gebirge 85 m

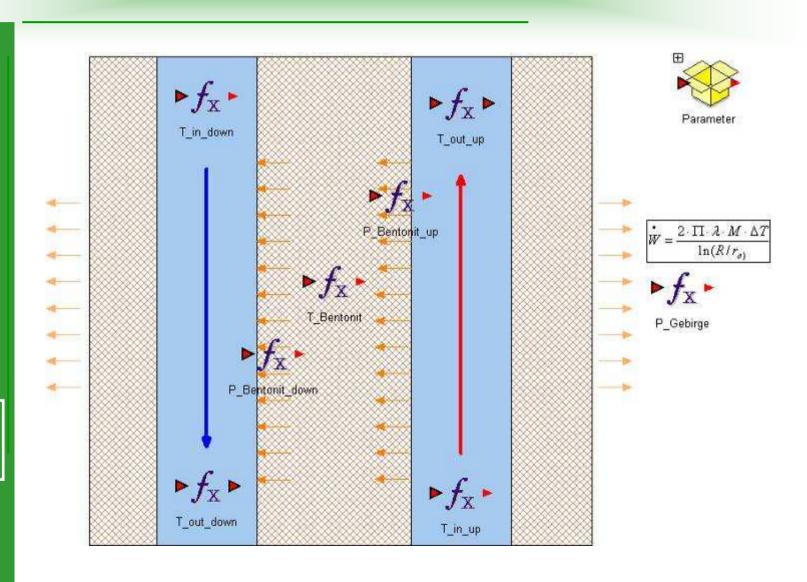
 $T = 10^{\circ}$

Geflutete Grube 25 m

T = 25℃

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.


Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

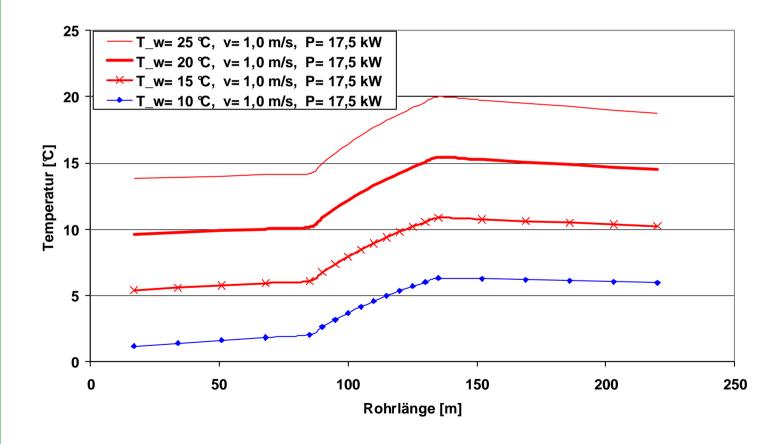
<u>Direktverdam-</u> <u>pfersonden</u>

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

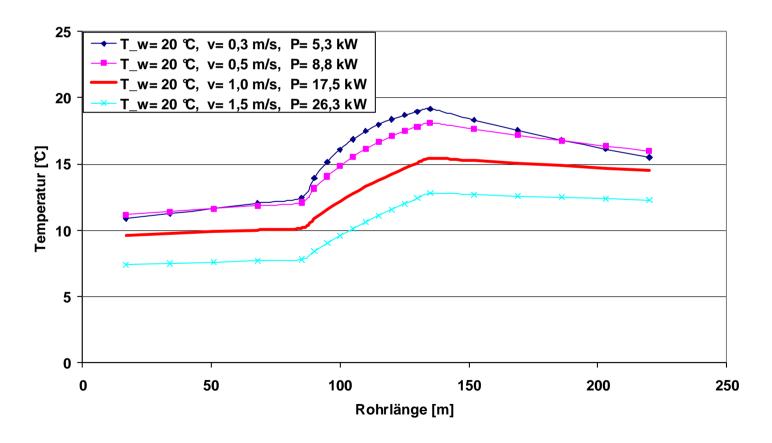
Temperaturverlauf entlang der Sonde

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Temperaturverlauf entlang der Sonde

Direktverdampfersonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

- Neues, innovatives System
- Es liegen keine langfristigen, belastbaren Erfahrungen vor
- Große Unklarheit zu den Leistungsparametern
 - Teilweise Angabe von (Dauer-) Heizleistungen von 50 W/m bis zu 500 W/m für gleichartige Systeme
 - Geht das?

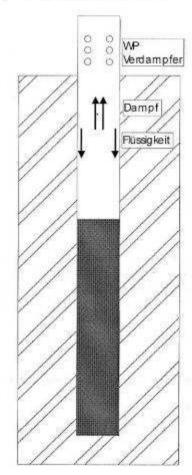
Direktverdampfersonden Schematischer Aufbau

Vorstellung Geokompetenzzentrum

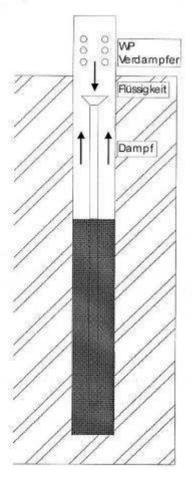
Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung


<u>Direktverdam-</u> pfersonden

Tiefe Sonden

a) Einrohrerdwärmesonde

b) Zweirohrerdwärmesonde

Direktverdampfersonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

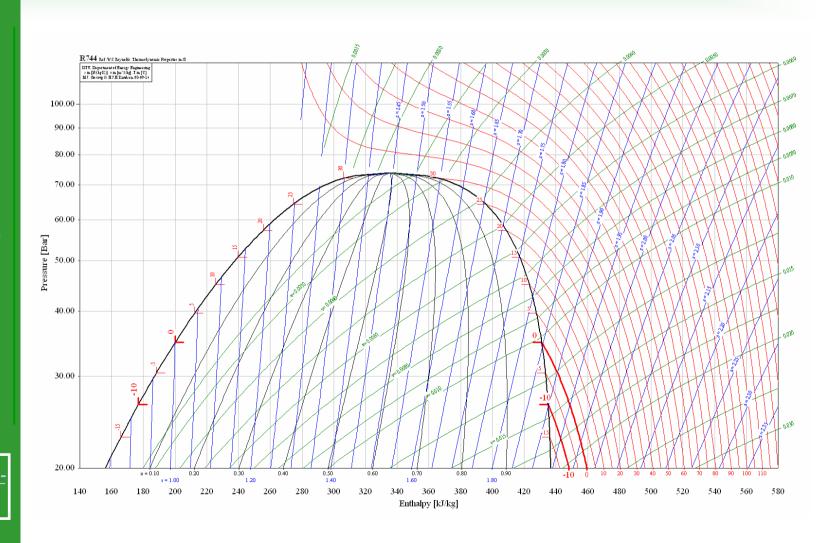
Zielstellungen:

- Durchführung einer Prozessanalyse
 - Beschränkung auf CO2-System
- Durchführung von Abschätzungen zu
 - Teilprozessen
 - Berücksichtigung von abgesicherten Erfahrungswerten und Literatur
- Abschätzung zur Auswirkung auf die Jahresarbeitszahl und Vergleich mit Sole
 - Gleiche Randbedingungen (Entzugsleistung)!

Direktverdampfersonden Kurzcharakterisierung CO2

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.


Energiebilanz

Wirtschaftlichkeit

Diskussion

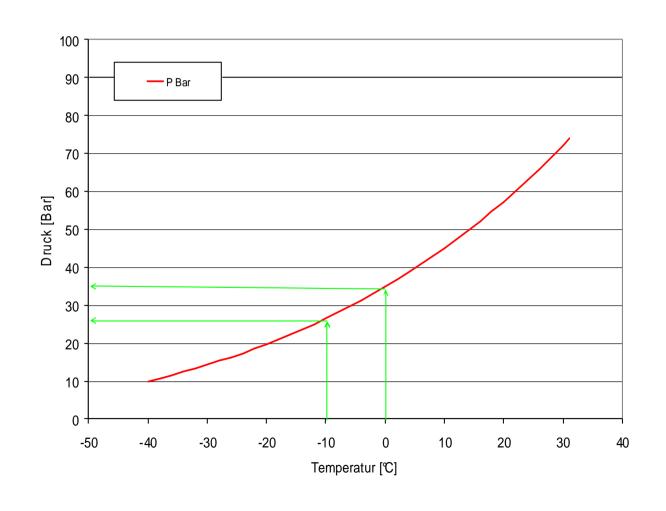
Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Direktverdampfersonden Kurzcharakterisierung CO2

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.


Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Direktverdampfersonden Kurzcharakterisierung CO2

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.


Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Direktverdampfersonden Grobabschätzungen

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Teilprozesse:

- Wärmetransport im Erdreich bis zur Bohrlochwand
- Wärmetransport von der Bohrlochwand über die Sonde bis zum Wärmetauscher der Wärmepumpe (WP)
- 3. Wirkung der Wärmepumpe

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Wärmetransport im Erdreich bis zur Bohrlochwand

- Erdreich / Gebirge ist eigentliches
 Wärmereservoir
- Abbau von statischen Wärmevorräten
- Abhängigkeit von der Entzugsleistung

Feststellung:

Kein Unterschied im Erdreich zwischen Direktverdampfer und Sole bei ansonsten gleichen Bedingungen

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

2. Wärmetransport von der Bohrlochwand über die Sonde bis zum Wärmetauscher der Wärmepumpe

Sole - Sonden

- Benötigte Leistung für Umwälzpumpe: ca. 10-15% der Gesamtleistung
 - Notwendigkeit turbulenter Strömung
- Optimierungspotenzial!

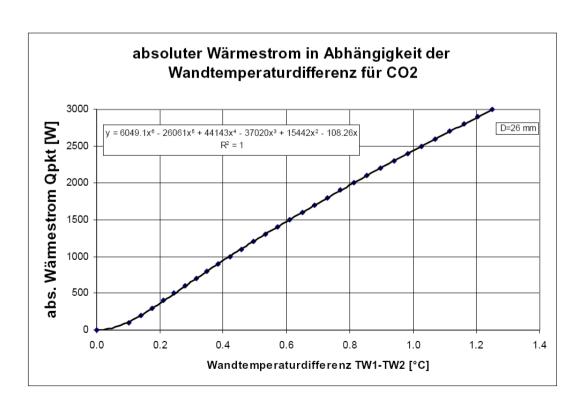
Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion


Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Zu 2. Direktverdampfersonden

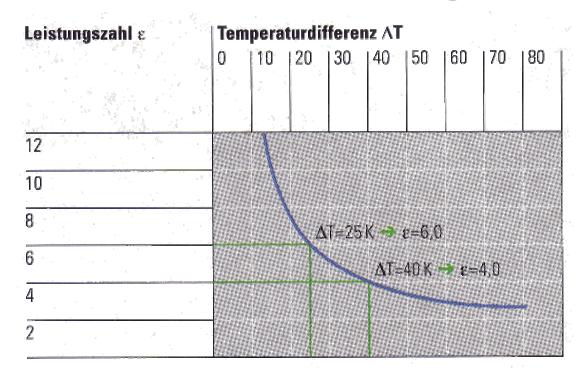
Temperaturunterschied um ca. 3 – 4 K geringer als bei Solesonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

3. Wirkung der Wärmepumpe Zusammenhang Temperaturdifferenz Primär-Sekundärkreis von Leistungszahl

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

3. Wirkung der Wärmepumpe Zusammenhang Temperaturdifferenz Primär-

Sekundärkreis von Leistungszahl

Erfahrungswerte:

2 ... 2.5% Verringerung der Arbeitszahl bei Erhöhung der Temperaturdifferenz um 1 K

- Verwendung von 2% f
 ür Absch
 ätzung
- Approx. gilt nur in begrenzten Bereich wegen Nichtlinearität

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Feststellungen unter der Annahme gleicher Entzugsleistung Direktverdampfer - Sole:

- Kein Unterschied im Bereich Gebirge
- Zwei wesentliche Effekte beim Wärmetransport innerhalb der Sonde:

 - Wegfall Umwälzpumpe bei Direktverdampfer → ca.
 15% Energieeinsparung → Erhöhung der AZ um ca.
 18% (bei Optimierung Sole nur ca. 7%)

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Feststellungen unter der Annahme gleicher Entzugsleistung Direktverdampfer - Sole:

 → CO2 – Direktverdampfer können bei optimaler Auslegung ca. 13 – 24% bessere AZ besitzen als Sole – Sonden

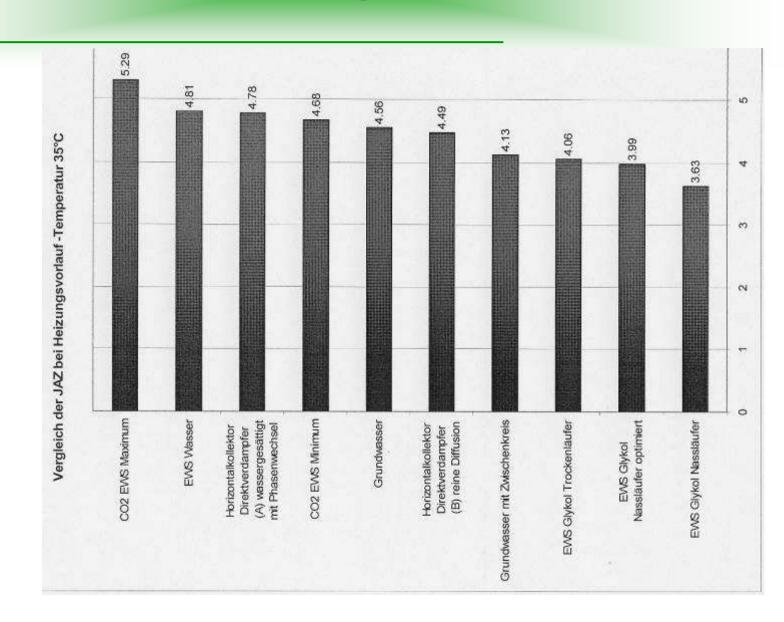
Bsp.: JAZ Sole: 4.2

→ JAZ CO2-Direktverdampfer: 4.7 ... 5.2

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz


Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

Zusammenfassung Vergleich

- CO2 Sonde lässt bessere AZ (bis 24% erwarten)
- Erhöhung der Entzugsleistung reduziert
 Arbeitszahl, deshalb sollte sie begrenzt werden
- Besondere Stärke: kurzfristig hohe Leistungen darstellbar (aber Beachtung Durchmesser)
- Rechtliche Fragen (VDI 4640: 0℃)
- Statistische Daten bzw. Erfahrungswerte liegen nur begrenzt vor
- Wirtschaftlichkeit erfordert separate Betrachtung

Tiefe Erdwärmesonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

Koaxialsonden:

Vorteile:

Abwärtsstrom:SukzessiveErwärmung

Probleme:

- IsolierungInnenrohr
- Druckverluste
 bei zu geringem
 Durchmessern

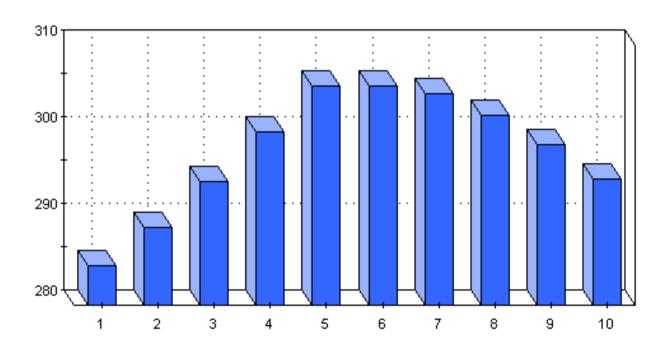
Tiefe Erdwärmesonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz

Wirtschaftlichkeit


Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> pfersonden

Tiefe Sonden

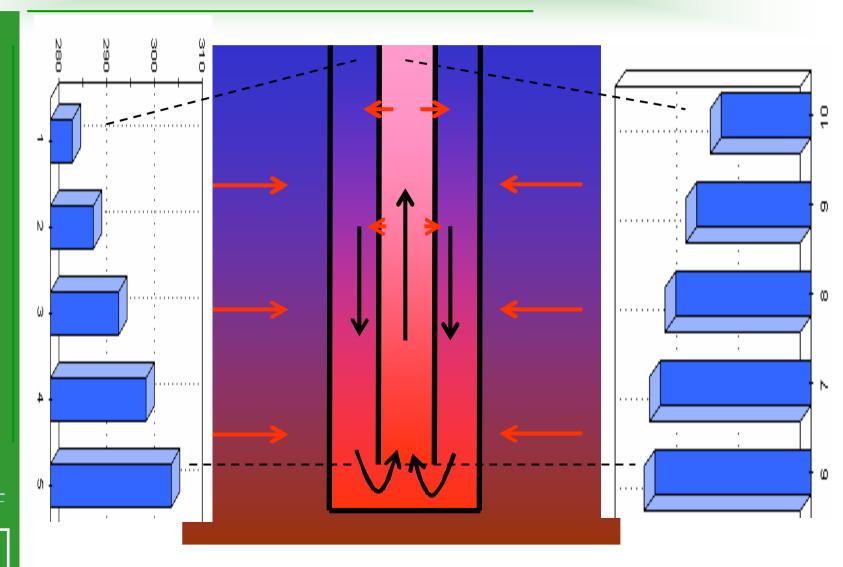
Temperturverlauf entlang der Strömungsbahn des Wassers:

Tiefe Erdwärmesonden

Vorstellung Geokompetenzzentrum

Vorstellung G.E.O.S.

Energiebilanz


Wirtschaftlichkeit

Diskussion

Geotherm.
Grubenwassernutzung

<u>Direktverdam-</u> <u>pfersonden</u>

Tiefe Sonden

